Correlated motions in the U1 snRNA stem/loop 2:U1A RBD1 complex.

نویسندگان

  • Scott A Showalter
  • Kathleen B Hall
چکیده

The complex formed by U1A RBD1 and the U1 snRNA stem/loop II is noted for its high affinity and exquisite specificity. Here, that complex is investigated by 5 ns molecular dynamics simulations and analyzed by reorientational eigenmode dynamics to determine the dynamic properties of the RNA:protein interface that could contribute to the binding mechanism. The analysis shows that there is extensive correlation between motions of the RNA and protein, involving 7 of the 10 RNA loop nucleotides, the protein beta-sheet surface, two of its loops, and its C-terminal tripeptide sequence. Order parameters of these regions of the complex are uniformly high, indicating restricted motion. However, several regions of both RNA and protein retain local flexibility, notably three nucleotides of the RNA loop and one loop of RBD1 that does not contact RNA. The highly correlated motions involving both molecules reflect the intricate network of interactions that characterize this complex and could account in part for the thermodynamic coupling observed for complex formation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of an anti-RNA recombinant autoantibody fragment (scFv) isolated from a phage display library and detailed analysis of its binding site on U1 snRNA.

This is the first study in which the complex of a monoclonal autoantibody fragment and its target, stem loop II of U1 snRNA, was investigated with enzymatic and chemical probing. A phage display antibody library derived from bone marrow cells of an SLE patient was used for selection of scFvs specific for stem loop II. The scFv specificity was tested by RNA immunoprecipitation and nitrocellulose...

متن کامل

Identification and Characterization of a Yeast Gene Encoding the U2 Small Nuclear Ribonucleoprotein Particle B0 Protein

The inessential yeast gene MUD2 encodes a protein factor that contributes to U1 small nuclear ribonucleoprotein particle (snRNP)–pre-mRNA complex (commitment complex) formation. To identify other genes that contribute to this early splicing step, we performed a synthetic lethal screen with a MUD2 deletion strain. The first characterized gene from this screen,MSL1 (MUD synthetic lethal 1), encod...

متن کامل

Nucleotide sequences of two soybean U1 snRNA genes.

Southern blot analyses show that the soybean genome contains many U1 snRNA genes, both in tandem arrays and as isolated genes. We have cloned and sequenced two soybean U1 snRNA genes, U1a and U1b, which represent distinct multicopy tandem repeat elements. Sequence analysis of the first 46 nt of soybean embryo protoplast U1 snRNA by primer extension shows that sequences corresponding to U1a and ...

متن کامل

Molecular dynamics and thermodynamics of protein-RNA interactions: mutation of a conserved aromatic residue modifies stacking interactions and structural adaptation in the U1A-stem loop 2 RNA complex.

Molecular dynamics (MD) simulations and free energy component analysis have been performed to evaluate the molecular origins of the 5.5 kcal/mol destabilization of the complex formed between the N-terminal RNP domain of U1A and stem loop 2 of U1 snRNA upon mutation of a conserved aromatic residue, Phe56, to Ala. MD simulations, including counterions and water, have been carried out on the wild ...

متن کامل

Do collective atomic fluctuations account for cooperative effects? Molecular dynamics studies of the U1A-RNA complex.

A complete understanding of gene expression relies on a comprehensive understanding of the protein-RNA recognition process. However, the study of protein-RNA recognition is complicated by many factors that contribute to both binding affinity and specificity, including structure, energetics, dynamical motions, and cooperative interactions. Several recent studies have suggested that energetic cou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 89 3  شماره 

صفحات  -

تاریخ انتشار 2005